Особенности использования сжиженного газа и дизтоплива

Удельная теплота сгорания некоторых горючих материалов

Приведена таблица удельной теплоты сгорания некоторых горючих материалов (стройматериалы, древесина, бумага, пластик, солома, резина и т. д.). Следует отметить материалы с высоким тепловыделением при сгорании. К таким материалам можно отнести: каучук различных типов, пенополистирол (пенопласт), полипропилен и полиэтилен.

Удельная теплота сгорания некоторых горючих материаловТопливоУдельная теплота сгорания, МДж/кг

Бумага 17,6
Дерматин 21,5
Древесина (бруски влажностью 14 %) 13,8
Древесина в штабелях 16,6
Древесина дубовая 19,9
Древесина еловая 20,3
Древесина зеленая 6,3
Древесина сосновая 20,9
Капрон 31,1
Карболитовые изделия 26,9
Картон 16,5
Каучук бутадиенстирольный СКС-30АР 43,9
Каучук натуральный 44,8
Каучук синтетический 40,2
Каучук СКС 43,9
Каучук хлоропреновый 28
Линолеум поливинилхлоридный 14,3
Линолеум поливинилхлоридный двухслойный 17,9
Линолеум поливинилхлоридный на войлочной основе 16,6
Линолеум поливинилхлоридный на теплой основе 17,6
Линолеум поливинилхлоридный на тканевой основе 20,3
Линолеум резиновый (релин) 27,2
Парафин твердый 11,2
Пенопласт ПХВ-1 19,5
Пенопласт ФС-7 24,4
Пенопласт ФФ 31,4
Пенополистирол ПСБ-С 41,6
Пенополиуретан 24,3
Плита древесноволокнистая 20,9
Поливинилхлорид (ПВХ) 20,7
Поликарбонат 31
Полипропилен 45,7
Полистирол 39
Полиэтилен высокого давления 47
Полиэтилен низкого давления 46,7
Резина 33,5
Рубероид 29,5
Сажа канальная 28,3
Сено 16,7
Солома 17
Стекло органическое (оргстекло) 27,7
Текстолит 20,9
Толь 16
Тротил 15
Хлопок 17,5
Целлюлоза 16,4
Шерсть и шерстяные волокна 23,1

Преимущества и недостатки

У ископаемого угля, который используется в качестве основного вида топлива, есть свои преимущества и недостатки. Каждый пункт обязательно должен быть рассмотрен теми потребителями, которые применяют этот материал для отопления своих домов и дач.

Среди положительных характеристик можно отметить следующие факты:

  1. При сгорании уголь выделяет много полезного тепла.
  2. Такое топливо может использоваться в современных котлах, которые работают по принципу «буржуйка», а также в универсальном оборудовании с системой водяного отопления.
  3. У потребителя всегда есть возможность выбрать наиболее подходящий материал — каменный, бурый или же древесный уголь.
  4. Такое топливо горит намного дольше, нежели обычные дрова. Как показывает практика, одной закладки вполне хватает на 12 часов активной эксплуатации котла.
  5. Доступная цена. Купить качественный уголь без лишних финансовых затрат можно в любом регионе России.
  6. Простота хранения. Добываемый каменный уголь практически не впитывает влагу, благодаря чему его можно хранить как под открытым небом, так и под небольшим навесом.

https://youtube.com/watch?v=vHmPxPKH744

Основными недостатками считаются следующие показатели:

  1. Загрязнение окружающей среды и неприятный запах. Во время сжигания ископаемых материалов, в атмосферу выделяется большое количество СО2. Помимо этого, дымовые газы имеют весьма резкий и неприятный запах, что может приносить массу дискомфорта обычным гражданам.
  2. Отсутствие автоматизации. У мастера не будет возможности настроить работу котла на определённый временной промежуток, к тому же загружать уголь придётся вручную. Для обычного устройства необходимо минимум 3 заправки топливным материалом в день.
  3. Регулярная очистка внутренних поверхностей и удаление скопившейся золы. Убирать все остатки угля необходимо ежедневно, во время этой процедуры котёл должен быть остановлен.

Все эти недостатки не являются критическими, благодаря чему ископаемый и древесный уголь активно используется не только в частной отрасли, но и промышленной. Такая популярность возникла на фоне доступной цены и отменных тепловых характеристик.

В таблицах представлена массовая удельная теплота сгорания топлива (жидкого, твердого и газообразного) и некоторых других горючих материалов. Рассмотрено такое топливо, как: уголь, дрова, кокс, торф, керосин, нефть, спирт, бензин, природный газ и т. д.

При экзотермической реакции окисления топлива его химическая энергия переходит в тепловую с выделением определенного количества теплоты. Образующуюся тепловую энергию принято называть теплотой сгорания топлива. Она зависит от его химического состава, влажности и является основным показателем топлива. Теплота сгорания топлива, отнесенная на 1 кг массы или 1 м 3 объема образует массовую или объемную удельную теплоты сгорания.

Удельной теплотой сгорания топлива называется количество теплоты, выделяемое при полном сгорании единицы массы или объема твердого, жидкого или газообразного топлива. В Международной системе единиц эта величина измеряется в Дж/кг или Дж/м 3 .

Удельную теплоту сгорания топлива можно определить экспериментально или вычислить аналитически. Экспериментальные методы определения теплотворной способности основаны на практическом измерении количества теплоты, выделившейся при горении топлива, например в калориметре с термостатом и бомбой для сжигания. Для топлива с известным химическим составом удельную теплоту сгорания можно определить по формуле Менделеева.

Различают высшую и низшую удельные теплоты сгорания. Высшая теплота сгорания равна максимальному количеству теплоты, выделяемому при полном сгорании топлива, с учетом тепла затраченного на испарение влаги, содержащейся в топливе. Низшая теплота сгорания меньше значения высшей на величину теплоты конденсации водяного пара, который образуется из влаги топлива и водорода органической массы, превращающегося при горении в воду.

Для определения показателей качества топлива, а также в теплотехнических расчетах обычно используют низшую удельную теплоту сгорания, которая является важнейшей тепловой и эксплуатационной характеристикой топлива и приведена в таблицах ниже.

4.2.1 Вычисление молярной теплоты сгорания

Высшая теплота сгорания (superior calorific value): Количество теплоты, которое может выделиться при полном сгорании в воздухе определенного количества газа таким образом, что давление p1, при котором происходит реакция, остается постоянным, а все продукты сгорания принимают ту же температуру t1, что и температура реагентов. При этом все продукты находятся в газообразном состоянии, за исключением воды, которая конденсируется в жидкость при t1.

Низшая теплота сгорания (inferior calorific value): Количество теплоты, которое может выделиться при полном сгорании в воздухе определенного количества газа таким образом, что давление p1, при котором протекает реакция, остается постоянным, все продукты сгорания принимают ту же температуру t1, что и температура реагентов. При этом все продукты находятся в газообразном состоянии.

Значение молярной теплоты сгорания идеального газа, определяемое исходя из значений молярной доли компонентов смеси известного состава, при температуре t1 вычисляют по формуле (5):

, (5)

где – значение идеальной теплоты сгорания смеси (высшей или низшей);

 –молярная доля j-го компонента;

 –значение идеальной теплоты сгорания j-го компонента (высшей или низшей).

 Числовые значения для t1=25 °С приведены в ГОСТ 31369-2008 (таблица 3 раздела 10).

4.2.2 Вычисление массовой теплоты сгорания

Значение массовой теплоты сгорания идеального газа, определяемое исходя из значений массовой доли компонентов смеси известного состава, при температуре вычисляют по формуле (6):

, (6)

где – значение идеальной (высшей или низшей) теплоты сгорания смеси, рассчитанное исходя из значений массовой доли компонентов газа;

M – молярная масса смеси, которую вычисляют по формуле (7):

, (7)

где – молярная доляj-го компонента;

 –молярная масса j-го компонента.

4.2.3 Вычисление объемной теплоты сгорания

Значение теплоты сгорания идеального газа, рассчитанное на основе значений объемной доли компонентов, для температуры сгорания t1 смеси известного состава, измеренных при температуре t2 и давлении p1, вычисляют по формуле (8):

, (8)

где – значение идеальной (высшей или низшей) объемной теплоты сгорания смеси;

R – универсальная газовая постоянная;

T2 – абсолютная температура, К.

4.2.4 Вычисление плотности, относительной плотности и числа Воббе

Плотность (density): Масса газовой пробы, деленная на ее объем при определенных значениях давления и температуры.

Относительная плотность (relative density): Плотность газа, деленная на плотность сухого воздуха стандартного состава (приложение В ГОСТ 31369-2008) при одинаковых заданных значениях давления и температуры.

Термин «идеальная относительная плотность» применяют в тех случаях, когда как газ, так и воздух считаются средами, которые подчиняются закону идеального газа; термин «реальная относительная плотность» применяют в тех случаях, когда как газ, так и воздух считаются реальными средами.

Число Воббе (Wobbe index): Значение высшей объемной теплоты сгорания при определенных стандартных условиях, деленное на квадратный корень относительной плотности при тех же стандартных условиях измерений.

Число Воббе – характеристика горючего газа, определяющая взаимозаменяемость горючих газов при сжигании в бытовых и промышленных горелочных устройствах, измеряется в мегаджоулях на кубический метр.

Относительная плотность идеального газа не зависит от выбора стандартного состояния, и ее вычисляют по формуле (9):

, (9)

где – относительная плотность идеального газа;

       –молярная масса j-го компонента;

     –молярная масса сухого воздуха стандартного состава.

В таблице 1 (раздел 10) ГОСТ 31369-2008 приведены значения молярной массы компонентов природного газа. В разделе В.3 (приложение В ГОСТ 31369-2008) приведен состав стандартного воздуха; рассчитанное значение равно 28,9626 кг·кмоль-1.

Плотность идеального газа зависит от его температуры t и давления p, и ее вычисляют по формуле (10):

, (10)

где – плотность идеального газа;

     R – универсальная газовая постоянная,

     T – абсолютная температура, К.

Число Воббе идеального газа вычисляют по формуле (11):

, (11)

где Wo– число Воббе идеального газа;

–значение идеальной объемной теплоты сгорания смеси.

Теплотворность твердых материалов

К этой категории относится древесина, торф, кокс, горючие сланцы, брикетное и пылевидное топливо. Основная составная часть твердого топлива — углерод.

Особенности разных пород дерева

Максимальная эффективность от использования дров достигается при условии соблюдения двух условий — сухости древесины и медленном процессе горения.

Куски дерева распиливают или рубят на отрезки длиной до 25-30 см, чтобы дрова удобно загружались в топку

Идеальными для дровяного печного отопления считаются дубовые, березовые, ясеневые бруски. Хорошими показателями характеризуется боярышник, лещина. А вот у хвойных пород теплотворность низкая, но высокая скорость горения.

Как горят разные породы:

  1. Бук, березу, ясень, лещину сложно растопить, но они способны гореть сырыми из-за низкого содержания влажности.
  2. Ольха с осиной не образуют сажи и «умеют» удалять ее из дымохода.
  3. Береза требует достаточного количества воздуха в топке, иначе будет дымить и оседать смолой на стенках трубы.
  4. Сосна содержит больше смолы, чем ель, поэтому искрит и горит жарче.
  5. Груша и яблоня легче других раскалывается и отлично горит.
  6. Кедр постепенно превращается в тлеющий уголь.
  7. Вишня и вяз дымит, а платан сложно расколоть.
  8. Липа с тополем быстро прогорают.

Рекомендуем: Промывка теплообменника газового котла: самая подробная инструкция по чистке своими руками, выбору жидкостей и прочих срдств для очистки от накипи, стоимость оборудования и услуг специалистов

Показатели ТСТ разных пород сильно зависят от плотности конкретных пород. 1 кубометр дров эквивалентен примерно 200 литрам жидкого топлива и 200 м3 природного газа. Древесина и дрова относятся к категории с низкой энергоэффективностью.

Влияние возраста на свойства угля

Уголь является природным материалом растительного происхождения. Добывается он из осадочных пород. В этом топливе содержится углерод и другие химические элементы.

Кроме типа на теплоту сгорания угля оказывает влияние и возраст материала. Бурый относится к молодой категории, за ним следует каменный, а самым старшим считается антрацит.

По возрасту горючего определяется и влажность: чем моложе уголь, тем больше в нем содержание влаги. Которая также влияет на свойства этого типа топлива

Процесс горения угля сопровождается выделением веществ, загрязняющих окружающую среду, колосники котла при этом покрываются шлаком. Еще один неблагоприятный фактор для атмосферы — наличие серы в составе топлива. Этот элемент при соприкосновении с воздухом трансформируется в серную кислоту.

Производителям удается максимально снизить содержание серы в угле. В результате ТСТ отличается даже в пределах одного вида. Влияет на показатели и география добычи. Как твердое топливо может использоваться не только чистый уголь, но и брикетированный шлак.

Наибольшая топливная способность наблюдается у коксующегося угля. Хорошими характеристиками обладает и каменный, древесный, бурый уголь, антрацит.

Характеристики пеллет и брикетов

Это твердое топливо изготавливается промышленным способом из различного древесного и растительного мусора.

Измельченная стружка, кора, картон, солома пересушивается и с помощью специального оборудования превращается в гранулы. Чтобы масса приобрела определенную степень вязкости, в нее добавляют полимер — лигнин.

Пеллеты отличаются приемлемой стоимостью, на которую влияют высокий спрос и особенности процесса изготовления. Использоваться этот материал может только в предназначенных для такого вида топлива котлах

Брикеты отличаются только формой, их можно загружать в печи, котлы. Оба типа горючего делятся на виды по сырью: из кругляка, торфа, подсолнечника, соломы.

У пеллет и брикетов есть существенные преимущества перед прочими разновидностями топлива:

  • полная экологичность;
  • возможность хранения практически в любых условиях;
  • устойчивость к механическим воздействиям и грибку;
  • равномерное и длительное горение;
  • оптимальный размер гранул для загрузки в отопительное устройство.

Экологичное топливо — хорошая альтернатива традиционным источникам тепла, которые не возобновляются и неблагоприятно действуют на окружающую среду. Но пеллеты и брикеты отличаются повышенной пожароопасностью, что стоит учитывать при организации места хранения.

При желании, можно наладить изготовление топливных брикетов собственноручно, подробнее – в этой статье.

Температура воспламенения солярки

Когда рассматривается температура воспламенения солярки, то преимущественно указывается самовоспламенение. Для летнего горючего она равна 310С, тогда как для зимнего 240С. Причина у данной разницы заключается в условиях эксплуатации и хранения. К тому же данные показатели сильно зависят от давления, потому что процесс возгорания ДТ в двигателе происходит именно при давлении, но без дополнительного источника искры (в бензиновых аналогах задействуются свечи).

Одним из важных нюансов стоит учитывать задержку воспламенения, т.к. именно она оказывает решающее влияние на ЦЧ. К тому же минимальная задержка позволяет существенно снизить выбросы вредных веществ в атмосферу.

Расчет теплотворной способности и теплотворной способности

Обычные виды топлива, такие как сырая нефть или уголь, представляют собой смеси веществ, элементный состав которых в основном известен из анализов. С помощью аппроксимационных формул теплотворная способность таких смесей веществ может быть рассчитана с достаточной точностью для технических применений по составу.

Также есть определение теплотворной способности по Дулонгу .

Твердое и жидкое топливо

Для твердого и жидкого топлива теплотворная способность и теплотворная способность рассчитываются на основе пропорций горючих веществ . Здесь, разделенные на 100 массовые проценты углерода, водорода, азота, серы, кислорода и воды в общей массе, включая содержание воды (для массовых долей водорода и кислорода это только те части, которые не присутствуют в форме воды ).
м(С.),м(ЧАС),м(N),м(С.),м(О),м(ЧАС2О){\ displaystyle m (\ mathrm {C}), m (\ mathrm {H}), m (\ mathrm {N}), m (\ mathrm {S}), m (\ mathrm {O}), m ( \ mathrm {H_ {2} O})}

Теплотворная способность (от общей массы):

ЧАСsзнак равно(35 год⋅м(С.)+116,3⋅м(ЧАС)+6-е,3⋅м(N)+10,4-й⋅м(С.)-10,8-е⋅м(О))М.Jkграмм{\ displaystyle {\ begin {align} H_ {s} & = (35 \ cdot m (\ mathrm {C}) +116 {,} 3 \ cdot m (\ mathrm {H}) +6 {,} 3 \ cdot m (\ mathrm {N}) + \\ & 10 {,} 4 \ cdot m (\ mathrm {S}) -10 {,} 8 \ cdot m (\ mathrm {O})) \, \ mathrm { МДж / кг} \ end {выравнивается}}}

Теплотворная способность (от общей массы):

ЧАСязнак равно(35 год⋅м(С.)+94,3⋅м(ЧАС)+6-е,3⋅м(N)+10,4-й⋅м(С.)-10,8-е⋅м(О)-2,44 год⋅м(ЧАС2О))М.Jkграмм{\ displaystyle {\ begin {align} H_ {i} & = (35 \ cdot m (\ mathrm {C}) +94 {,} 3 \ cdot m (\ mathrm {H}) +6 {,} 3 \ cdot m (\ mathrm {N}) +10 {,} 4 \ cdot m (\ mathrm {S}) \\ & — 10 {,} 8 \ cdot m (\ mathrm {O}) -2 {,} 44 \ cdot m (\ mathrm {H_ {2} O})) \, \ mathrm {МДж / кг} \ end {align}}}

Теплотворная способность (в пересчете на безводное топливо):

ЧАСs,шжзнак равноЧАСs1-м(ЧАС2О){\ displaystyle {\ begin {align} H_ {s, wf} & = {\ frac {H_ {s}} {1-m (\ mathrm {H_ {2} O)}}} \ end {align}}}

Теплотворная способность (в пересчете на безводное топливо):

ЧАСя,шжзнак равноЧАСя+2,441 М.Jkграмм⋅м(ЧАС2О)1-м(ЧАС2О){\ displaystyle {\ begin {align} H_ {i, wf} & = {\ frac {H_ {i} +2 {,} 441 \ \ mathrm {MJ / kg} \ cdot m (\ mathrm {H_ {2}) O)}} {1-m (\ mathrm {H_ {2} O)}}} \ конец {выровнено}}}

При преобразовании между теплотворной способностью и теплотворной способностью необходимо учитывать, что вода, образующаяся в результате содержания водорода, и вода, уже содержащаяся в топливе, находятся в газообразной форме для теплотворной способности (при 25 ° C), но в жидкой форме для теплотворная способность (при 25 ° C). Следовательно, энтальпия испарения воды при 25 ° C 2,441 МДж / кг включена в преобразование:

ЧАСязнак равноЧАСs-2,441(м(ЧАС2О)+9⋅м(ЧАС))М.Jkграмм{\ displaystyle {\ begin {align} H_ {i} & = H_ {s} -2 {,} 441 (m (\ mathrm {H_ {2} O}) +9 \ cdot m (\ mathrm {H}) ) \, \ mathrm {МДж / кг} \ end {align}}}

Газовые смеси

В случае газовых смесей расчет основан на газообразном водороде и наиболее важных углеводородах . И т. Д. Представляют собой мольные доли компонентов с эмпирическими формулами, указанными в скобках.
п(С.О){\ Displaystyle п (\ mathrm {CO})}

Теплотворная способность:

ЧАСsзнак равно(282,98⋅п(С.О)+285,83⋅п(ЧАС2)+890,63⋅п(С.ЧАС4-й)+1411,18-е⋅п(С.2ЧАС4-й)+1560,69⋅п(С.2ЧАС6-е)+2058,02⋅п(С.3ЧАС6-е)+2219,17-е⋅п(С.3ЧАС8-е)+2877,40⋅п(С.4-йЧАС10))kJмОл{\ displaystyle {\ begin {align} H_ {s} & = (282 {,} 98 \ times n (\ mathrm {CO}) +285 {,} 83 \ times n (\ mathrm {H_ {2}})) +890 {,} 63 \ times n (\ mathrm {CH_ {4}}) \\ & + 1411 {,} 18 \ times n (\ mathrm {C_ {2} H_ {4}}) +1560 {,} 69 \ cdot n (\ mathrm {C_ {2} H_ {6}}) +2058 {,} 02 \ cdot n (\ mathrm {C_ {3} H_ {6}}) \\ & + 2219 {,} 17 \ cdot n (\ mathrm {C_ {3} H_ {8}}) ​​+2877 {,} 40 \ cdot n (\ mathrm {C_ {4} H_ {10}})) \, \ mathrm {кДж / моль} \ конец {выровнено}}}

Теплотворная способность:

ЧАСязнак равно(282,98⋅п(С.О)+241,81 год⋅п(ЧАС2)+802,60⋅п(С.ЧАС4-й)+1323,15-е⋅п(С.2ЧАС4-й)+1428,64⋅п(С.2ЧАС6-е)+1925 г.,97⋅п(С.3ЧАС6-е)+2043,11⋅п(С.3ЧАС8-е)+2657,32⋅п(С.4-йЧАС10))kJмОл{\ displaystyle {\ begin {align} H_ {i} & = (282 {,} 98 \ times n (\ mathrm {CO}) +241 {,} 81 \ times n (\ mathrm {H_ {2}})) +802 {,} 60 \ times n (\ mathrm {CH_ {4}}) \\ & + 1323 {,} 15 \ times n (\ mathrm {C_ {2} H_ {4}}) +1428 {,} 64 \ cdot n (\ mathrm {C_ {2} H_ {6}}) +1925 {,} 97 \ cdot n (\ mathrm {C_ {3} H_ {6}}) + \\ & 2043 {,} 11 \ cdot n (\ mathrm {C_ {3} H_ {8}}) ​​+2657 {,} 32 \ cdot n (\ mathrm {C_ {4} H_ {10}})) \, \ mathrm {кДж / моль} \ конец {выровнено}}}

Какие дрова можно использовать в России

Традиционно, самой любимой породой дров для сжигания в кирпичных печах в России является береза. Хотя по сути береза представляет собой сорняк, семена которого легко зацепляются за любую почву – оно чрезвычайно широко используется в быту. Неприхотливое и быстро растущее дерево верой и правдой служило нашим предкам уже множество веков.

Березовые дрова имеют сравнительно хорошую теплотворность и горят достаточно медленно, ровно, не накаляя чрезмерно печь. Кром того, даже сажа, получаемая при сгорании березовых дров идет в дело – она включает в себя деготь, который используется как в бытовых, так и в лечебных целях.

Кроме березы, из лиственных пород дерева в качестве дров используется древесина осины, тополя и липы. Качество их по сравнению с березой, конечно же не очень, но при неимении других вполне можно пользоваться и такими дровами. Кроме того, липовые дрова при сгорании выделяют особый аромат, который считается полезным.

Дрова из осины дают высокое пламя. Их можно использовать на заключительном этапе топки, чтобы выжечь сажу, образовавшуюся при сжигании других дров.

Также довольно ровно горит ольха, и после сгорания она оставляет небольшое количество золы и сажи. Но опять же по сумме всех качество ольховые дрова не могут составить конкуренцию березовым. Но с другой стороны – при использовании не в бане, а для приготовления пищи – ольховые дрова очень даже неплохи. Их ровное горение помогает качественно готовить пищу, особенно выпечку.

Дрова, заготовленные из плодовых деревьев встречаются довольно редко. Такие дрова, а особенно клен горят очень быстро и пламя при горении достигает очень высокой температуры, что может негативно сказаться на состоянии печи. К тому же вам всего лишь нужно нагреть в бане воздух и воду, а не плавить в ней металл. При использовании таких дров их необходимо перемешивать с дровами с низкой теплотворной способностью.

Дрова из хвойных пород дерева используются довольно редко. Во-первых, такая древесина очень часто используется в строительных целях, а во-вторых – наличие большого количества смолы в хвойных деревьях загрязняет топки и дымоходы. Топить печку хвойными дровами имеет смысл только после длительной сушки.

Выбор материала

Даже самые высокие качества древесины могут быть сведены на нет, если ее подобрать неверно с учетом конкретного вида деятельности. Например, практически не имеет значения что использовалось для ночного костра при посиделках с друзьями. Совершенно другое дело — растопка камина или печи в бане.

Рекомендуем прочитать материал о том, где хранить дрова в дополнение к данной статье.

Для каждой ситуации подбираются разные по толщине, породе и свойствам материалы

Для камина

Отопление дома может стать проблемой, если загрузить в печь неподходящие дрова. Особенно это опасно при использовании камина, так как искрящееся бревно может привести даже к пожару.

Ненавязчивое горение дров и жар, исходящий от камина — это изюминка гостиной комнаты

Для долгого горения и выделения большого количества тепла стоит отдавать предпочтение дубу, акации, а также березе и ореху. Для прочистки дымохода время от времени можно жечь осину и ольху. Плотность у этих пород небольшая, зато они обладают свойством выжигать сажу.

Для бани

Для обеспечения высокой температуры в парилке бани необходима максимальная теплоотдача дров. Кроме того, можно улучшить условия отдыха, если использовать такие породы, которые насыщают комнату приятным запахом, без выделения вредных веществ и смол.

Прочитайте так же о буржуйке для бани своими руками в дополнение к данной статье.

Качество и сорт дров для бани играют определяющую роль

Для обогрева парилки оптимальным выбором станут, конечно же, дубовые и березовые поленья. Они твердые, дают хороший жар при небольшом объеме и к тому же выделяют приятные испарения. Дополнительный оздоровительный эффект также способны оказать липа и ольха. Использовать можно только хорошо просушенные материалы, но не старше полутора-двух лет.

Для барбекю

При приготовлении пищи на мангале и барбекю основным моментом является не само горение дров, а образование углей. Именно поэтому не имеет смысла использовать тонкие неплотные ветки. Их можно взять только для розжига костра, а затем добавить в топку крупные твердые поленья. Для того чтобы дым имел особый аромат, для мангала рекомендуется использовать фруктовые дрова. Можно комбинировать их с дубом и акацией.

Для барбекю важен не огонь, а угли и аромат дыма

При использовании разных сортов древесины обращайте внимание на размер чурок. Например, дубу понадобится больше времени для горения и тления, нежели яблоне, поэтому имеет смысл брать более толстые фруктовые поленья

kaminia.ru
Добавить комментарий